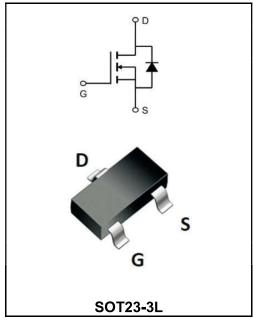


100V N-CHANNEL ENHANCEMENT MODE MOSFET

MAIN CHARACTERISTICS


I _D	6A		
V _{DSS}	100V		
R _{DSON} -typ(@V _{GS} =10V)	< 125mΩ(Type:105 mΩ)		

Application

♦Automative lighting

♦Load switch

♦Uninterruptible power supply

Marking Code		
YFW6N10MI	1006	

Maximum Ratings at Tc=25°C unless otherwise specified

Characteristics	Symbols	Value	Units
Drain-Source Voltage	V _{DS}	100	V
Gate - Source Voltage	V _{GS}	±20	V
Continuous Drain Current, V _{GS} @ 10V ¹	I _D	6	Α
Continuous Drain Current, V _{GS} @ 10V ¹	I _D	3.5	Α
Pulsed Drain Current ²	I _{DM}	18	Α
Total Power Dissipation ³ @T _A =25℃	P _D	3.1	w
Storage Temperature Range	T _{STG}	-55 to +150	°C
Operating Junction Temperature Range	TJ	-55 to +150	°C
Thermal Resistance Junction-ambient(steady state)1	R _{0JA}	135	°C/W
Thermal Resistance Junction-ambient(t<10s)1	R _{0JA}	40	°C/W

Maximum Ratings at Tc=25°C unless otherwise specified

Characteristics	Test Condition	Symbols	Min	Тур	Max	Units
Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250uA	BV _{DSS}	100	108	-	V
Static Drain-Source On-Resistance ²	V _{GS} =10V, I _D =4A	_	-	105	125	mΩ
	V _{GS} =4.5V, I _D =2A	R _{DS(ON)}	-	120	145	
Gate Threshold Voltage	V _{DS} = V _{GS} , I _D =250μA	V _{GS(th)}	1.2	1.7	2.5	V
Due in Course Landson Course	V _{DS} =80V , V _{GS} =0V , T _J =25°C		-	-	1	
Drain-Source Leakage Current	V _{DS} =80V , V _{GS} =0V , T _J =85°C	loss	-	-	50	- μΑ
Gate- Source Leakage Current	V _{GS} =±20V, V _{DS} =0V	I _{GSS}	-	-	±100	nA
Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz	Rg	-	2.3	4.6	Ω
Total Gate Charge(10V)	V _{DS} =30V	Qg	-	3.57	-	
Gate-Source Charge	V _{GS} =10V	Q _{gs}	-	0.76	-	nC
Gate-Drain Charge	− I _D =4A	\mathbf{Q}_{gd}	-	0.71	-	
Turn-on delay time		t _{d(on)}	-	11	-	
Rise Time	V_{DD} =30V V_{GS} =10V	Tr	-	6	-]
Turn-Off Delay Time	R_G =3.3 Ω I_D =1A	t _{d(OFF)}	-	30	-	- ns
Fall Time	ID-1A	t _f	-	4	-	
Input Capacitance	V _{DS} =50V	C _{iss}	-	582	-	
Output Capacitance	V _{GS} =0V	Coss	-	330	-	PF
Reverse Transfer Capacitance	f=1MHz	C _{rss}	-	36	-	1
Continuous Source Current ^{1,4}	V _G =V _D =0V , Force Current	Is	-	-	2	Α
Diode Forward Voltage ²	ge 2 V _{GS} =0V , I _S =1A , T _J =25 $^{\circ}$ C		-	-	1.2	V

Note:

- 1. The data tested by surface mounted on a 1 inch 2 FR-4 board with 2OZ copper.
- 2. The data tested by pulsed , pulse width \leqq 300us , duty cycle \leqq 2%
- $3 {\scriptstyle \vee}$ The power dissipation is limited by $150 {\, ^\circ \!\!\! C}$ junction temperature
- 4. The data is theoretically the same as I D and I DM, in real applications, should be limited by total power dissipation.

Ratings and Characteristic Curves

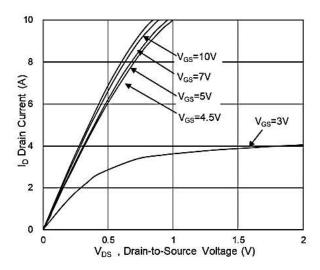


Fig.1 Typical Output Characteristics

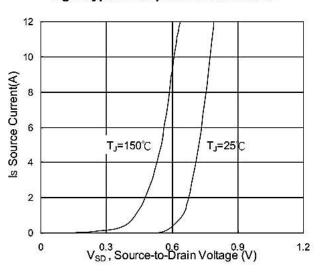


Fig.3 Source Drain Forward Characteristics

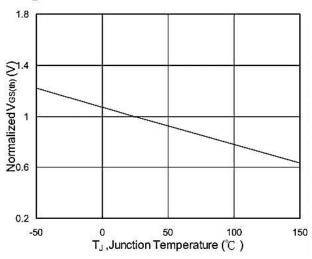


Fig.5 Normalized V_{GS(th)} vs T_J

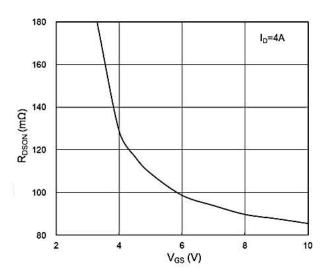


Fig.2 On-Resistance vs G-S Voltage

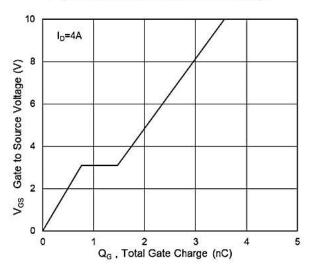


Fig.4 Gate-Charge Characteristics

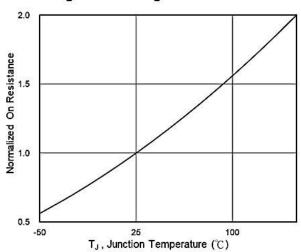
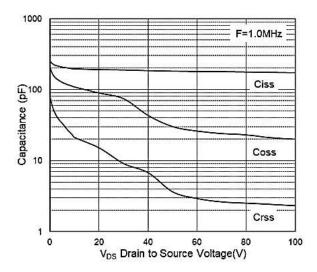



Fig.6 Normalized RDSON vs TJ

Ratings and Characteristic Curves

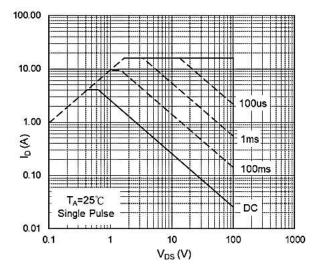


Fig.7 Capacitance

Fig.8 Safe Operating Area

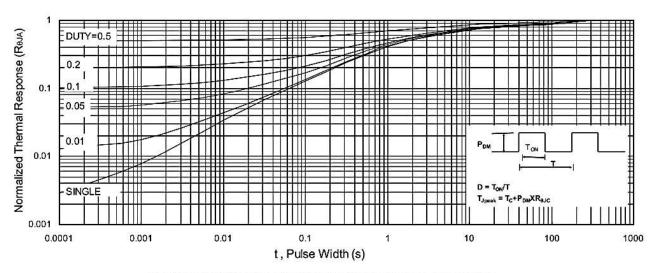


Fig.9 Normalized Maximum Transient Thermal Impedance

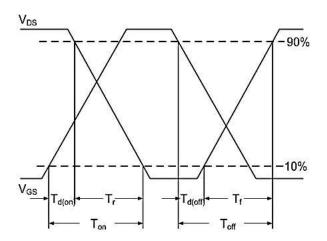


Fig.10 Switching Time Waveform

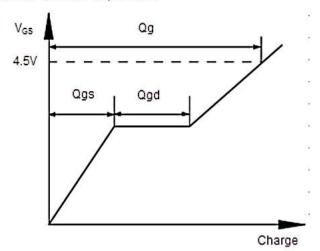
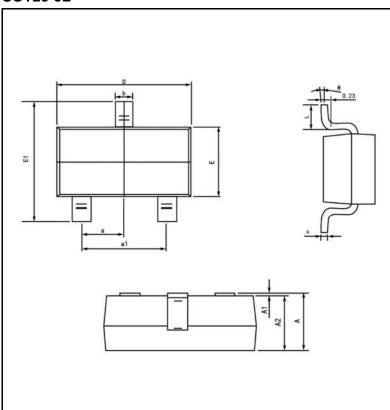
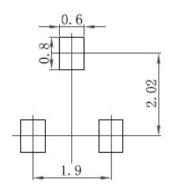


Fig.11 Gate Charge Waveform



Ordering information

Package	Package Packing Description		Packing Quantity	
SOT23-3L Tape/Reel,7"reel		3000pcs/Reel	24000PCS/Box 120000PCS/Carton	


Package Dimensions

SOT23-3L

Dim.	Millimeter (mm)		m	nil
	Min.	Max.	Min.	Max.
А	1.05	1.25	41	49.2
A1	0.	0.10		93
A2	1.05	1.15	41	45
b	0.30	0.50	12	20
С	0.10	0.20	3.93	7.9
D	2.82	3.02	111	119
Е	1.50	1.70	59	67
E1	2.65	2.95	104	116
е	0.95		37	7.4
e1	1.80	2.00	71	78
L	0.30	0.066	12	26
Θ	8°			

The recommended mounting pad size

Disclaimer

The information presented in this document is for reference only. GuangDong Youfeng Microelectronics Co.,Ltd. reserves the right to make changes without notice for the specification of the products displayed herein to improve reliability, function or design or otherwise. The product listed herein is designed to be used with ordinary electronic equipment or devices, and not designed to be used with equipment or devices which require high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices),YFW or anyone on its behalf, assumes no responsibility or liability for any damages resulting from such improper use of sale. This publication supersedes & replaces all information previously supplied. For additional information, please visit our website https://www.yfwdiode.com, or consult YFW sales office for further assistance.